import org.apache.spark.ml._
transformer: DataFrame =[transform]=> DataFrame
estimator: DataFrame =[fit]=> Model
model: DataFrame =[predict]=> DataFrame (with predictions)
evaluator: DataFrame =[evaluate]=> Double
import org.apache.spark.ml.tuning.CrossValidator
model.write
.overwrite()
.save("/path/where/to/save/model")
val model =
PipelineModel.load("/path/with/model")