Skip to content

Schema — Structure of Data

A schema is the description of the structure of your data (which together create a Dataset in Spark SQL). It can be implicit (and <>) or explicit (and known at compile time).

A schema is described using StructType which is a collection of StructFields (that in turn are tuples of names, types, and nullability classifier).

StructType and StructField belong to the org.apache.spark.sql.types package.

[source, scala]

import org.apache.spark.sql.types.StructType val schemaUntyped = new StructType() .add("a", "int") .add("b", "string")

// alternatively using Schema DSL val schemaUntyped_2 = new StructType() .add("a".int) .add("b".string)

You can use the canonical string representation of SQL types to describe the types in a schema (that is inherently untyped at compile type) or use type-safe types from the org.apache.spark.sql.types package.

[source, scala]

// it is equivalent to the above expressions import org.apache.spark.sql.types.{IntegerType, StringType} val schemaTyped = new StructType() .add("a", IntegerType) .add("b", StringType)

TIP: Read up on[CatalystSqlParser] that is responsible for parsing data types.

It is however recommended to use the singleton DataTypes class with static methods to create schema types.

import org.apache.spark.sql.types.DataTypes._
val schemaWithMap = StructType(
  StructField("map", createMapType(LongType, StringType), false) :: Nil)

StructType offers printTreeString that makes presenting the schema more user-friendly.

scala> schemaTyped.printTreeString
 |-- a: integer (nullable = true)
 |-- b: string (nullable = true)

scala> schemaWithMap.printTreeString
|-- map: map (nullable = false)
|    |-- key: long
|    |-- value: string (valueContainsNull = true)

// You can use prettyJson method on any DataType
scala> println(schema1.prettyJson)
 "type" : "struct",
 "fields" : [ {
   "name" : "a",
   "type" : "integer",
   "nullable" : true,
   "metadata" : { }
 }, {
   "name" : "b",
   "type" : "string",
   "nullable" : true,
   "metadata" : { }
 } ]

As of Spark 2.0, you can describe the schema of your strongly-typed datasets using encoders.

[source, scala]

import org.apache.spark.sql.Encoders

scala> Encoders.INT.schema.printTreeString root |-- value: integer (nullable = true)

scala> Encoders.product[(String, java.sql.Timestamp)].schema.printTreeString root |-- _1: string (nullable = true) |-- _2: timestamp (nullable = true)

case class Person(id: Long, name: String) scala> Encoders.product[Person].schema.printTreeString root |-- id: long (nullable = false) |-- name: string (nullable = true)

=== [[implicit-schema]] Implicit Schema

[source, scala]

val df = Seq((0, s"""hello\tworld"""), (1, "two spaces inside")).toDF("label", "sentence")

scala> df.printSchema root |-- label: integer (nullable = false) |-- sentence: string (nullable = true)

scala> df.schema res0: org.apache.spark.sql.types.StructType = StructType(StructField(label,IntegerType,false), StructField(sentence,StringType,true))

scala> df.schema("label").dataType res1: org.apache.spark.sql.types.DataType = IntegerType

Last update: 2021-04-13