Skip to content

SimplifyCasts Logical Optimization

SimplifyCasts is a base logical optimization that <> in the following cases:

. The input is already the type to cast to. . The input is of ArrayType or MapType type and contains no null elements.

SimplifyCasts is part of the Operator Optimization before Inferring Filters fixed-point batch in the standard batches of the Logical Optimizer.

SimplifyCasts is simply a <> for transforming <>, i.e. Rule[LogicalPlan].

[source, scala]

// Case 1. The input is already the type to cast to scala> val ds = spark.range(1) ds: org.apache.spark.sql.Dataset[Long] = [id: bigint]

scala> ds.printSchema root |-- id: long (nullable = false)

scala> ds.selectExpr("CAST (id AS long)").explain(true) ... TRACE SparkOptimizer: === Applying Rule org.apache.spark.sql.catalyst.optimizer.SimplifyCasts === !Project [cast(id#0L as bigint) AS id#7L] Project [id#0L AS id#7L] +- Range (0, 1, step=1, splits=Some(8)) +- Range (0, 1, step=1, splits=Some(8))

TRACE SparkOptimizer: === Applying Rule org.apache.spark.sql.catalyst.optimizer.RemoveAliasOnlyProject === !Project [id#0L AS id#7L] Range (0, 1, step=1, splits=Some(8)) !+- Range (0, 1, step=1, splits=Some(8))

TRACE SparkOptimizer: Fixed point reached for batch Operator Optimizations after 2 iterations. DEBUG SparkOptimizer: === Result of Batch Operator Optimizations === !Project [cast(id#0L as bigint) AS id#7L] Range (0, 1, step=1, splits=Some(8)) !+- Range (0, 1, step=1, splits=Some(8)) ... == Parsed Logical Plan == 'Project [unresolvedalias(cast('id as bigint), None)] +- Range (0, 1, step=1, splits=Some(8))

== Analyzed Logical Plan == id: bigint Project [cast(id#0L as bigint) AS id#7L] +- Range (0, 1, step=1, splits=Some(8))

== Optimized Logical Plan == Range (0, 1, step=1, splits=Some(8))

== Physical Plan == *Range (0, 1, step=1, splits=Some(8))

// Case 2A. The input is of ArrayType type and contains no null elements. scala> val intArray = Seq(Array(1)).toDS intArray: org.apache.spark.sql.Dataset[Array[Int]] = [value: array]

scala> intArray.printSchema root |-- value: array (nullable = true) | |-- element: integer (containsNull = false)

scala> intArray.map(arr => arr.sum).explain(true) ... TRACE SparkOptimizer: === Applying Rule org.apache.spark.sql.catalyst.optimizer.SimplifyCasts === SerializeFromObject [input[0, int, true] AS value#36] SerializeFromObject [input[0, int, true] AS value#36] +- MapElements , class [I, [StructField(value,ArrayType(IntegerType,false),true)], obj#35: int +- MapElements , class [I, [StructField(value,ArrayType(IntegerType,false),true)], obj#35: int ! +- DeserializeToObject cast(value#15 as array).toIntArray, obj#34: [I +- DeserializeToObject value#15.toIntArray, obj#34: [I +- LocalRelation [value#15] +- LocalRelation [value#15]

TRACE SparkOptimizer: Fixed point reached for batch Operator Optimizations after 2 iterations. DEBUG SparkOptimizer: === Result of Batch Operator Optimizations === SerializeFromObject [input[0, int, true] AS value#36] SerializeFromObject [input[0, int, true] AS value#36] +- MapElements , class [I, [StructField(value,ArrayType(IntegerType,false),true)], obj#35: int +- MapElements , class [I, [StructField(value,ArrayType(IntegerType,false),true)], obj#35: int ! +- DeserializeToObject cast(value#15 as array).toIntArray, obj#34: [I +- DeserializeToObject value#15.toIntArray, obj#34: [I +- LocalRelation [value#15] +- LocalRelation [value#15] ... == Parsed Logical Plan == 'SerializeFromObject [input[0, int, true] AS value#36] +- 'MapElements , class [I, [StructField(value,ArrayType(IntegerType,false),true)], obj#35: int +- 'DeserializeToObject unresolveddeserializer(upcast(getcolumnbyordinal(0, ArrayType(IntegerType,false)), ArrayType(IntegerType,false), - root class: "scala.Array").toIntArray), obj#34: [I +- LocalRelation [value#15]

== Analyzed Logical Plan == value: int SerializeFromObject [input[0, int, true] AS value#36] +- MapElements , class [I, [StructField(value,ArrayType(IntegerType,false),true)], obj#35: int +- DeserializeToObject cast(value#15 as array).toIntArray, obj#34: [I +- LocalRelation [value#15]

== Optimized Logical Plan == SerializeFromObject [input[0, int, true] AS value#36] +- MapElements , class [I, [StructField(value,ArrayType(IntegerType,false),true)], obj#35: int +- DeserializeToObject value#15.toIntArray, obj#34: [I +- LocalRelation [value#15]

== Physical Plan == *SerializeFromObject [input[0, int, true] AS value#36] +- *MapElements , obj#35: int +- *DeserializeToObject value#15.toIntArray, obj#34: [I +- LocalTableScan [value#15]

// Case 2B. The input is of MapType type and contains no null elements. scala> val mapDF = Seq(("one", 1), ("two", 2)).toDF("k", "v").withColumn("m", map(col("k"), col("v"))) mapDF: org.apache.spark.sql.DataFrame = [k: string, v: int ... 1 more field]

scala> mapDF.printSchema root |-- k: string (nullable = true) |-- v: integer (nullable = false) |-- m: map (nullable = false) | |-- key: string | |-- value: integer (valueContainsNull = false)

scala> mapDF.selectExpr("""CAST (m AS map)""").explain(true) ... TRACE SparkOptimizer: === Applying Rule org.apache.spark.sql.catalyst.optimizer.SimplifyCasts === !Project [cast(map(_1#250, _2#251) as map) AS m#272] Project [map(_1#250, _2#251) AS m#272] +- LocalRelation [_1#250, _2#251] +- LocalRelation [_1#250, _2#251] ... == Parsed Logical Plan == 'Project [unresolvedalias(cast('m as map), None)] +- Project [k#253, v#254, map(k#253, v#254) AS m#258] +- Project [_1#250 AS k#253, _2#251 AS v#254] +- LocalRelation [_1#250, _2#251]

== Analyzed Logical Plan == m: map Project [cast(m#258 as map) AS m#272] +- Project [k#253, v#254, map(k#253, v#254) AS m#258] +- Project [_1#250 AS k#253, _2#251 AS v#254] +- LocalRelation [_1#250, _2#251]

== Optimized Logical Plan == LocalRelation [m#272]

== Physical Plan == LocalTableScan [m#272]


=== [[apply]] Executing Rule -- apply Method

[source, scala]

apply(plan: LogicalPlan): LogicalPlan

apply...FIXME

apply is part of the Rule abstraction.


Last update: 2021-05-20
Back to top